Noninvasive indirect imaging of vascular endothelial growth factor gene expression using bioluminescence imaging in living transgenic mice.
نویسندگان
چکیده
Vascular endothelial growth factor (VEGF) plays a critical role in the early activation of stromal tissues during wound healing and tumor growth. We report the use of a two-step transcriptional amplification (TSTA) approach to augment the transcriptional activity of the relatively weak VEGF promoter (pVEGF) using firefly luciferase (fl) reporter gene and bioluminescence imaging (BLI). In cell culture, we demonstrate that TSTA-based fl gene expression can be significantly enhanced over the direct one-step system. Using a transgenic mouse model (pVEGF-TSTA-fl), we demonstrate the induction of VEGF gene expression using a wound-healing model and a subcutaneous mammary tumor model. In skin-wounding experiments, pVEGF-induced fl expression in the wound lesion is detected on days 4 and 5 and peaks on days 15-22. Furthermore, the bioluminescence signal shows good correlation with the endogenous VEGF protein levels in the wound tissue (r2 = 0.70). In the mammary tumor model, fl expression is detected on day 3, peaks at day 17, and declines thereafter. These results support the use of noninvasive BLI for the longitudinal monitoring of VEGF induction during wound healing and tumor progression, and this mouse model should find use in various applications in which it is important to noninvasively study VEGF gene expression.
منابع مشابه
Fluorescence and Bioluminescence Imaging of Angiogenesis in Flk1-Nano-lantern Transgenic Mice
Angiogenesis is important for normal development as well as for tumour growth. However, the molecular and cellular mechanisms underlying angiogenesis are not fully understood, partly because of the lack of a good animal model for imaging. Here, we report the generation of a novel transgenic (Tg) mouse that expresses a bioluminescent reporter protein, Nano-lantern, under the control of Fetal liv...
متن کاملThe Use of a Whole Animal Biophotonic Model as a Screen for the Angiogenic Potential of Estrogenic Compounds
BACKGROUND Vascular endothelial growth factor (VEGF) is essential for normal vascular growth and development during wound repair. VEGF is estrogen responsive and capable of regulating its own receptor, vascular endothelial growth factor receptor-2 (VEGFR-2). Several agricultural pesticides (e.g., methoxychlor) have estrogenic potential that can initiate inappropriate physiological responses in ...
متن کاملBioluminescence Imaging of β Cells and Intrahepatic Insulin Gene Activity under Normal and Pathological Conditions
In diabetes research, bioluminescence imaging (BLI) has been applied in studies of β-cell impairment, development, and islet transplantation. To develop a mouse model that enables noninvasive imaging of β cells, we generated a bacterial artificial chromosome (BAC) transgenic mouse in which a mouse 200-kbp genomic fragment comprising the insulin I gene drives luciferase expression (Ins1-luc BAC ...
متن کاملNoninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice.
Several transgenic mouse models of prostate cancer have been developed recently that are able to recapitulate many key biological features of the human condition. It would, therefore, be desirable to employ these models to test the efficacy of new therapeutics before clinical trial; however, the variable onset and non-visible nature of prostate tumor development limit their use for such applica...
متن کاملP-182: The Role of Vascular Endothelial Growth Factor Gene Expression in Patients with the History of Endometriosis
Background: Endometriosis is the presence of endometrium- like tissue in sites outside the uterine cavity, primarily on the pelvic peritoneum and ovaries. Ectopic endometrium for replacement and growth require to blood supply. Vascular endothelial growth factor (VEGF) is one of the most important intermediate of locality angiogenesis that product by monocytes and macrophages. This study evaluat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological genomics
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2006